Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2). Colonists with resource‐acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C‐above‐ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity‐dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.more » « less
-
Nitrogen deposition, along with habitat losses and climate change, has been identified as a primary threat to biodiversity worldwide (Butchart et al., 2010; MEA, 2005; Sala et al., 2000). The source of this stressor to natural systems is generally twofold: burning of fossil fuels and the use of fertilizers in modern intensive agriculture. Each of these human enterprises leads to the release of large amounts of biologically reactive nitrogen (henceforth contracted to "nitrogen") to the atmosphere, which is later deposited to ecosystems. Because nitrogen is a critical element to all living things (as a primary building block of proteins among other biological molecules), nitrogen availability often limits primary production and is tightly recycled in many natural ecosystems. This is especially true in temperate ecosystems, though it may also be true for some areas in the tropics that are not phosphorus-limited (Adams et al., 2004; Matson et al., 1999). Thus, the large increase in availability of this critical nutrient as a result of human activity has profound impacts on ecosystems and on biodiversity. Once nitrogen is deposited on terrestrial ecosystems, a cascade of effects can occur that often leads to overall declines in biodiversity (Bobbink et al., 2010; Galloway et al., 2003). For plants, nitrogen deposition can impact biodiversity generally through four processes: (1) stimulation of growth often of weedy species that outcompete local neighbors (termed "eutrophication"), (2) acidification of the soil and consequent imbalances in other key nutrients that favors acid tolerant species (termed "acidification"), (3) enhancement of secondary stressors such as from fire, drought, frost, or pests triggered by increased nitrogen availability (termed "secondary stressors"), and (4) direct damage to leaves (termed "direct toxicity") (Bobbink, 1998; Bobbink et al., 2010). For animals, much less is known, but reductions in plant biodiversity can lead to reductions in diversity of invertebrate and other animal species, loss of habitat heterogeneity and specialist habitats, increased pest populations and activity, and changes in soil microbial communities (McKinney and Lockwood, 1999; Throop and Lerdau, 2004; Treseder, 2004). Citation Clark, Christopher M.; Bai, Yongfei; Bowman, William D.; Cowles, Jane M.; Fenn, Mark E.; Gilliam, Frank S.; Phoenix, Gareth K.; Siddique, Ilyas; Stevens, Carly J.; Sverdrup, Harald U.; Throop, Heather L. 2013. Nitrogen deposition and terrestrial biodiversity. In: Levin S.A. (ed.) Encyclopedia of Biodiversity, second edition, Volume 5, Waltham, MA: Academic Press. pp. 519-536.more » « less
An official website of the United States government
